
Unit-I

1. (a) State and prove the Dirichlet’s tests for
uniform convergence.

(b) State and prove the Cauchy’s criterion for
uniform convergence.

(c) (i) Test for uniform convergence of the
series :
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(ii) Prove that if  is any fixed positive
number less than unity, the series
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Unit-II

2. (a) State and prove the Tauber’s theorem.

(b) Prove that the sum of an absolute
convergent series does not alter with any
rearrangement of terms.

(c) (i) Prove that the series
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(ii) Find the radius of convergence of the

power series 
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Unit-III

3. (a) Let  be the set of all invertible linear
operators on Rn.

(i) If A  , B  L (Rn) and ||B – A||
||A–1|| < 1. Then prove that B  .
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(ii)  is open subset is L(Rn) and the
mapping f :   defined by
f (A) = A–1 for all A   is
continuous.

(b) State and prove tha chain rule.

(c) Write short note on derivatives is an open
subset of Rn.

Unit-IV

4. (a) If  
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show that u, v, w are not independent
and find the relations among them.

(b) Prove that
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(c) Determine the maximum and minimum
values of the function

  2 2 3 3,
2

f x y x y xy  

subject to the constraint 4x2 + y2 = 1.

Unit-V

5. (a) Write definition of :

(i) The integral of 1-form
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(ii) The integral of 2-form

(iii) The Triple integral

(b) State and prove the partitions of unity.

(c) Lew w and  be k and m-forms
respectively of class C in some open set
E  Rn. Then prove that

d (w  ) = (dw)  + (–1)k w  d .
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